The role of LEMD3 in the pathogenesis of melorheostosis

Geert Mortier MD PhD Center for Medical Genetics Gent University Hospital

- sclerosing bone dysplasia
- autosomal dominant
- hyperostotic spots
- usually detected incidentally
- estimated prevalence: 1/20.000 - 1/50.000
- isolated or in association with other skin/bone lesions

Buschke-Ollendorff syndrome

BOS = osteopoikilosis + connective tissue nevi (elastic or collagenous type)

Light micrograph – Van Gieson – x100

Pedigrees

Family B

Clinical Report

Melorheostosis in a Family With Autosomal Dominant Osteopoikilosis: Report of a Third Family

Philippe Debeer,^{1,2}* E. Pykels,¹ J. Lammens,² K. Devriendt,¹ and J.-P. Fryns¹

¹Centre for Human Genetics, University Hospital Leuven, Herestraat, Leuven, Belgium ²Department of Orthopedics, University Hospital Pellenberg, Weligerveld, Pellenberg, Belgium

Fig. 3. Radiological appearance of the left foot of the proband at the age of 5 years. **a**: Typical sclerotic areas can be seen in the first metatarsal head, the proximal phalanx of the hallux, the fifth metatarsal, the phalanges of the fifth toe, and the basis of the fourth metatarsal. There is shortening of the fifth ray. **b**: In the os calcaneum, there is also a dense sclerotic lesion (arrow).

Melorheostosis

- joint contractures
- curving or shortening of limb(s)
- chronic pain, swelling of joints
- skin, subcutaneous tissue or muscle involvement
- irregular linear areas of increased radiodensity along the major axis of the tubular bones
- areas of osteophytic periosteal excrescences (dripping candle wax)
- ectopic bone formation
- sometimes round radiodensities
- no hereditary transmission

Melorheostosis

Patient D0503242

Linkage results

- Genome wide linkage analysis
- Linkage for two markers on chr. 12
- Region: D12S1048 D12S313
- Combined maximum two-point LOD score of 6.691

Marker	Position ^a	Family A Z at θ=0	Family B Z at θ =0	Family C Z at θ=0	Families A to C Z at θ=0
D12S1048	56.38	-4.419			-4.419
D12S1663	56.38	3.744	1.764	0.602	6.110
D12S1661	63.89	3.744	1.764	1.183	6.691
D12S1691	72.20	3.744	1.764	1.183	6.691
D12S1686	76.36	3.744	0.882	1.183	5.809
D12S313	79.93	3.744	1.764	-2.796	2.712
D12S1703	81.05	3.744	1.764	-2.796	2.712
D12S326	86.40	2.443			2.443

^a Positions are given in centiMorgans according to the Marshfield map

Unusual case

- 16-year-old girl
- normal pregnancy
- uneventful delivery
- small-for-date baby (W:2060 g at term)
- failure to thrive during infancy
- proportionate short stature

measurements at age 16yrs:

- weight: 31.8 kg (P50 for 10 yrs)
- height: 131.5 cm (P50 for 9 yrs)
- OFC: 49 cm (P50 for 3 yrs)
- mild cognitive impairment
- anomalies of position/shape of internal organs
 - ectopic kidneys
 - aberrant origin of renal arteries
 - malrotation of small bowel
 - midline positioned spleen; rectangular shaped liver

Unusual case

Syndromic form of osteopoikilosis

Contiguous gene deletion syndrome?

Linkage results

- Genome wide linkage analysis
- Linkage for two markers on chr. 12
- Region: D12S1048 D12S1663
- Combined maximum two-point LOD score of 6.691
- Identification of microdeletion between D12S329 and tsc0527430
- Region of interest: 3.07Mb 23 genes
- Two candidate genes: WIF1 LEMD3

3

LEMD3 function

LEMD3 mutations

Patient	diagnosis	LEMD3 mutation	
Family A	BOS	c.2154dupA	
Family B	OP + melo	c.1609C>T	
Family C	BOS c.1185dupT		
G03-2881	OP	c.1941+5delG	
G03-2882	OP	c.457C>T	
G03-1885	BOS	c.1033_1035delGGGinsC	
G03-1858	OP+MR+short stature	microdeletion	

Genetics

Microdeletion

Microdeletion

Center for Medical Genetics

Loss-of-function mutations in *LEMD3* result in osteopoikilosis, Buschke-Ollendorff syndrome and melorheostosis

Jan Hellemans¹, Olena Preobrazhenska², Andy Willaert¹, Philippe Debeer³, Peter C M Verdonk⁴, Teresa Costa⁵, Katrien Janssens⁶, Bjorn Menten¹, Nadine Van Roy¹, Stefan J T Vermeulen¹, Ravi Savarirayan⁷, Wim Van Hul⁶, Filip Vanhoenacker⁸, Danny Huylebroeck², Anne De Paepe¹, Jean-Marie Naeyaert⁹, Jo Vandesompele¹, Frank Speleman¹, Kristin Verschueren², Paul J Coucke¹ & Geert R Mortier¹

Nature Genetics Nov 2004; 36:1213

- 1) Loss of function mutations in LEMD3 can result in
 - osteopoikilosis
 - Buschke-Ollendorff syndrome
 - melorheostosis
- 1) Human LEMD3
 - binds to the MH2 domain of BMP and TGFβ specific Smads
 - inhibits both the BMP and TGFβ signaling pathways

Follow-up study

Screening a larger series of patients

Group	patient	disorder	mutation
A	04g3557	OP	c.1801G>T
	04g3867	BOS	c.1323C>A
	04g3934	BOS	c.1873C>T
	D0501606	BOS	c.1914insA
	04g3820	OP?	no mutation
В	D0500261*	OP+melo	c.1963C>T
	D0503238	OP+melo	c.830dupA
	D0503122	<i>OP+melo?</i>	c.2494-9A>G
с	D0402645	melo	c.1913T>A
	9 other patients	melo	no mutation

* Butkus CE et al Am J Med Genet 1997;72:43

- loss-of-function mutations in LEMD3 do result in OP or BOS
- loss-of-function mutations in LEMD3 are found in families with OP and melorheostosis
- majority of sporadic patients with melorheostosis do NOT have a germline mutation in LEMD3
 - germline mutation outside the analysed region?
 - somatic mutations in LEMD3?
 - is haploinsufficiency for LEMD3 just a predisposing factor?

Gent University Hospital

University of Gent

Brugge

