Isn't It Ironic: BMPs and the Relationship Between Iron and Bone

Robert E. Fleming, M.D.

Associate Professor of Pediatrics,
Biochemistry & Molecular Biology
Saint Louis University School of Medicine

General Outline

General Outline

Iron & Bone: Hereditary Hemochromatosis

- Autosomal recessive disorder
- Due to common mutation in HFE gene
- Low clinical penetrance
- Hepatic iron overload
- Low hepcidin levels

Iron and Osteopenia

- Sickle Cell Disease
- Thallesemia
- HH
- Transfusion iron overload
- Post-menopause

Bone Disease in Hemochromatosis

- Fractures
 - case reports
- Osteoporosis
 - **29-34%**
- Osteopenia
 - **71-79%**

Stainable bone iron in undecalcified, plastic-embedded sections. Occurrence in man related to the presence of "free" iron H Laeng, T Egger, C Roethlisberger and H Cottier

- 2.3% of 1536 iliac crest biopsies in patients without HH
- 4/4 with HH
- 11/15 vertebral bone fragments with HH
- Correlates with presence of NTBI
- Found at "osteoid seam"

Iron Lactate-Induced Osteopenia in Male Sprague-Dawley Rats

Shuuichi Matsushima, 1,2 Mariko Hoshimoto, 1 Mikinori Torii, 1 Kiyokazu Ozaki, 2 and Isao Narama 2

¹Pathology Section, Drug Safety Evaluation, Developmental Research Laboratories, Shionogi & Co, Ltd, Toyonaka, Osaka, Japan ²Research Institute of Drug Safety, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan

Toxicologic Pathology, vol 29, no 6, pp 623–629, 2001

Hemochromatotic Salers Cattle

Hemochromatotic Salers Cattle

Skeletal Changes in Hemochromatosis of Salers Cattle

R. W. NORRDIN, K. J. HOOPES, AND D. O'TOOLE

Age-associated Iron Accumulation in Bone: Implications for Postmenopausal Osteoporosis and a New Target for Prevention and Treatment by Chelation Liu G, Men P, Kenner GH, Miller SC

- Ovarectomized rat model of postmenopausal osteoporosis
- Severity of osteoporosis associated with iron accumulation in bone
- Mitigated by bone-targeted chelator

Potential Mechanisms for Iron-Related Osteopenia

- Hypogonadism
- Hyperparathyroidism
- Iron toxicity
- "Unknown factor"

Lactoferrin Is a Potent Regulator of Bone Cell Activity and Increases Bone Formation *in Vivo*

JILLIAN CORNISH, KAREN E. CALLON, DORIT NAOT, KATE P. PALMANO, TATJANA BANOVIC, USHA BAVA, MAUREEN WATSON, JIAN-MING LIN, P. C. TONG, QI CHEN, VINCENT A. CHAN, HELEN E. REID, NICK FAZZALARI, HEATHER M. BAKER, EDWARD N. BAKER, NEILL W. HAGGARTY, ANDREW B. GREY, AND IAN R. REID

Lactoferrin

- Member of transferrin family
- Iron binding protein
- Produced by exocrine glands, neutrophils
- Anabolic to bone
 - Stumulator of osteoblast proliferation, differentiation
 - Inhibitor of osteoclastogenesis

Endocrinology 145(9):4366–4374, 2004

General Outline

A role of SMAD4 in iron metabolism through the positive regulation of hepcidin expression

Rui-Hong Wang,^{1,5} Cuiling Li,^{1,5} Xiaoling Xu,¹ Yin Zheng,¹ Cuiying Xiao,¹ Patricia Zerfas,² Sharon Cooperman,³ Michael Eckhaus,² Tracey Rouault,³ Lopa Mishra,⁴ and Chu-Xia Deng^{1,*}

CELL METABOLISM: DECEMBER 2005 VOL. 2, P. 399-409

Loss of Hepcidin Regulation in Haptocellular SMAD4 KO Mice

BMPs Regulate Hepatocellular Hepcidin Expression

Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression

Jodie L Babitt¹, Franklin W Huang^{2,7}, Diedra M Wrighting^{2,7}, Yin Xia^{1,7}, Yisrael Sidis^{3,7}, Tarek A Samad⁴, Jason A Campagna⁴, Raymond T Chung⁵, Alan L Schneyer³, Clifford J Woolf⁴, Nancy C Andrews^{2,6} & Herbert Y Lin¹

NATURE GENETICS VOLUME 38 NUMBER 5 MAY 2006

Namea	Alternative name	Potential functions	Bone induction model studied
BMP-2	BMP-2A	Cartilage and bone morphogenesis	Rodent, subcutaneous
ВМР-3	Osteogenin	Bone formation	Rodent, subcutaneous
ВМР-ЗВ	GDF-10	Bone formation	NS
BMP-4	BMP-2B	Cartilage and bone morphogenesis	Rodent, subcutaneous
BMP-5	_	Bone morphogenesis	NS
ВМР-6	Vgr-1	Cartilage hypertrophy	Rodent, subcutaneous
BMP-7	OP-1	Bone differentiation	Rodent, subcutaneous
BMP-8	OP-2	Bone formation	NS
BMP-8B	OP-3	NS	NS
BMP-9	GDF-2	NS	NS
BMP-10	_	NS	NS
BMP-11	GDF-11	NS	NS
BMP-12	GDF-7, CDMP-3	Ligament and tendon development	NS
BMP-13	GDF-6, CDMP-2	Cartilage development and hypertrophy	NS
BMP-14	GDF-5, CDMP-1, CDMP-2	Mesenchymal condensation and chondrogenesis	Rodent, subcutaneous, intramuscular
BMP-15	CDMP-1	NS	Rodent, subcutaneous
BMP-16	_	NS	NS
TGF-β†	_	NS	Primate, intramuscular
TGF-β2	-	NS	Primate, intramuscular

From Ramoshebi LN et al: Exp Rev Molec Med, 2002

Effect of BMPs on Hepcidin mRNA in HuH7 Cells

courting Bulby Bulbo Bulbo

TGFβ and BMP Regulation of Hepcidin in Human Hepatoma (HuH7) Cells

Effect of Iron on BMP-Induction of Hepcidin Expression

control fe BMP *Fe BMP *holoff

Effect of Iron on TGFb Signaling in HuH7 Cells

NTBI in Hemochromatosis

Increased NTBI and Decreased Hepcidin

- HFE, TfR2, HJV associated HH
- Atransferrinemia
- Acute hemolysis

Increased NTBI, Decreased Hepcidin, Osteopenia

- HH
- Sickle cell
- Beta thalassemia

Speculative Model

- Holotransferrin increases hepcidin
- Elemental iron decreases BMP signaling
- In iron overload, increased elemental iron attenuates BMP signaling
- Decreased BMP signaling leads to
 - Decreased hepcidin
 - Osteopenia

JOURNAL OF CELLULAR PHYSIOLOGY 187:265±276 (2001)

JOURNAL OF CELLULAR PHYSIOLOGY 187:265±276 (2001)