Melorheostosis Association
Third Annual Melorheostosis Conference
July 2005; St. Louis, MO

The Identification and Characteristics of MAN1: The Protein Mutated in Melorheostosis

Howard J. Worman
Columbia University
New York, NY

The Nuclear Envelope

The Nuclear Envelope

The Nuclear Lamina is Composed of 10 nm-diameter Filaments

10 nm fibers

Aebi et al. (1986)

Features Unique to Most Nuclear Lamins Compared to Cytoplasmic Intermediate Filament Proteins

Assembly of the Nuclear Lamina

Discontinuous meshwork of lamin filaments

HUMAN NUCLEAR LAMINS

LOCUS	CHROMOSOME	PROTEINS	CELL-TYPES EXPRESSED
LMNA	1q21.2-21.3	Lamin A	Differentiated Somatic
		Lamin C	Differentiated Somatic
		Lamin A $\Delta 10$	Differentiated Somatic
		Lamin C2	Germ
LMNB1	5q23.2-31.1	Lamin B1	Apparently All Somatic
LMNB2	19p13.3	Lamin B2	All or Most Somatic
		Lamin B3	Germ

Some Characterized Proteins of the Inner Nuclear Membrane

Heterochromatin

Schirmer et al. *Science* 2003;301:1380-1382 -- 80 transmembrane proteins

Integral Proteins Reach the Inner Nuclear Membrane by Diffusion-retention

Integral proteins synthesized on rough ER can diffuse to INM (size limit ~60 kDa) and be retained by binding to lamina or chromatin. The same proteins can potentially reach the Golgi/PM.

The Nuclear Envelope

Invasion of the Positional Cloners

- 1994, Bione et al. show that emerin mutations cause X-linked Emery-Dreifuss muscular dystrophy
- 1999, Bonne et al. show that lamin A/C mutations cause autosomal dominant Emery-Dreifuss muscular dystrophy; others show mutations in related skeletal and cardiac muscle disorders
- 2000, Cao & Hegele, Shackleton et al. and others show lamin A/C mutations cause Dunnigan-type partial lipodystrophy
- 2002, De Sandre-Giovannoli et al. show a lamin A/C missense mutation cause recessive Charcot-Marie-Tooth Disorder type 2
- 2002, Novelli et al. show that a lamin A/C homozygous missense mutation causes mandibuloacral dysplasia
- 2002, Hoffmann et al. show that mutations in LBR cause Pelger-Huët anomaly
- 2003, Waterham et al. show that mutations in LBR cause autosomal recessive HEM/Greenberg skeletal dysplasia

Invasion of the Positional Cloners Continued

2003, De Sandre-Giovannoli et al., Eriksson et al. and Cao and Hegele show lamin A splicing mutations in Hutchinson-Gilford progeria

2004. Hellemans et al. show that loss-of-function mutations in MAN1 result in osteopoikilosis, Buschke-Ollendorff syndrome and melorheostosis

Mutations in LMNA Cause Different Diseases

Striated Muscle Disease

- Autosomal Dominant Emery-Dreifuss Muscular Dystrophy
- Dilated Cardiomyopathy with Conduction Defect 1
- Limb Girdle Muscular Dystrophy Type 1B

Partial Lipodystrophy Syndromes

- Dunnigan-type Partial Lipodystrophy
- Mandibuloacral Dysplasia (with developmental anomalies)

Peripheral Neuropathy

• Charcot-Marie-Tooth Disorder Type 2B1

"Premature Aging" Syndromes

- Hutchinson-Gilford Progeria Syndrome
- Atypical Werner Syndrome

Mutations in Integral Inner Nuclear Membrane Proteins Associated With Nuclear Lamins Cause Several Diseases

Emerin

• Emery-Dreifuss Muscular Dystrophy (X-linked)

LBR

- Pelger-Huët Anomaly (Heterozygous)
- HEM/Greenberg Skeletal Dysplasia (Homozygous)

MAN1

• Osteopoikilosis, Buschke-Ollendorff Syndrome and Melorheostosis (Heterozygous)

Discovery of MAN1: "MAN Antiserum" Recognizes a Nuclear Envelope Antigen

Expression Cloning, cDNA Sequencing Genomic Analysis of MAN1

MAN1 on Chromsome 12q14

MW ~97 kDa

Lin et al. (2000)

MAN1 Shares the LEM Domain with Other Inner Nuclear Membrane Proteins

Lin et al. (2000)

Structure of the LEM and LEM-like Domains of LAP2

Laguri et al. (2001)

MAN1 is Localized to the Inner Nuclear Membrane

MAN1 Amino-terminal, Nucleoplasmic Domain Confers Inner Nuclear Membrane Targeting

Wu et al. 2002

MAN1 is Immobilized in the Inner Nuclear Membrane Relative to the ER

Wu et al. 2002

MAN1 Yeast 2-Hybrid Screen

MAN1 Binds Smad 2/3 in Vitro

Binding of MAN1-CT to Smad2/3 Invitro

MAN1 Binds Smad2 in Vivo

Lin et al. 2005

Smads in TGF-ß Signaling

MAN1 Inhibits TGF-ß Transcription Activation

Creation of Cell Lines Overexpressing MAN1

MAN1 Inhibits TGF-ß-mediated Cell Proliferation Arrest

MAN1 Also Inhibits Smad1mediated Signaling (*Xenopus*)

- •Osada et al. (2003) XMAN1, an inner nuclear membrane protein, antagonizes BMP signaling by interacting with Smad1 in *Xenopus* embryos. *Development* 130:1783-1794.
- •Raju et al. (2003) SANE, a novel LEM domain protein, regulates bone morphogenetic protein signaling through interaction with Smad1. *J. Biol. Chem.* 278:428-437.

More From Positional Cloners

Hellemans et al. (*Nature Genet*. 2004;36:1213-1218) reported that loss-of-function heterozygous mutations in MAN1 (LEMD3) result in osteopoikilosis, Buschke-Ollendorff syndrome and melorheostosis.

Other Results Showing MAN1 Regulate Smad1/2/3 Signaling

•Pan et al. (2005) The integral inner nuclear membrane protein MAN1 physically interacts with the R-Smad proteins to repress signaling by the TGFbeta superfamily of cytokines. *J. Biol. Chem.* 280:15992-6001.

Melorheostosis, Osteopikilosis and Buschke-Ollendorff Syndrome

Radiograph showing osteopoikilosis lesions, best visible in left humerus

Light micrograph showing elastic-type nevus in Buschke-Ollendorff syndrome

From Hellemans et al. Nature Genet. 2004;36:1213-1218.

MAN1 in TGF-ß Signaling

MAN1, Nuclear Signaling and Disease

Loss-of-functions mutations in MAN1 cause osteopoikilosis, Buschke-Ollendorff syndrome and melorheostosis because there is a loss of inhibition of transcription factors Smad1, Smad2 and Smad3, hence leading to enhanced BMP signaling (bone lesions) and TGF-ß signaling (skin lesions). Disease results from abnormal signal transduction at the inner nuclear membrane.

Mutations in Inner Nuclear Membrane Proteins and Human Disease: Conclusions

- Melorheostosis and allelic variants are caused by mutations in MAN1, an inner nuclear membrane protein that antagonizes rSmad signaling
- At least one "nuclear envelopathy" is very likely caused by abnormal signal transduction
- More research is needed

Acknowledgements

Columbia Past & Present

Revekka Boguslavsky

Lars Holmer

Kyu-Kye Hwang

Feng Lin

Antoine Muchir

Cecilia Östlund

Ekkehard Schuler

Bruno Soullam

Birgit Terjung

Wei Wu

Qian Ye

Collaborators

Gisèle Bonne

Isabelle Callebaut

Jean-Claude Courvalin

Joel Eissenberg

Jan Ellenberg

Einar Hallberg

Jennifer Lippincott-Schwartz

Micheline Paulin-Levasseur

Hartmut Schmidt

Ketty Schwartz

Sophie Zinn-Justin